Background

Unlike most animals, plants are sessile and cannot flee in response  to acute  stress. Many plants have  developed defensive  responses  such as the mechanical  movement  of  leaves,  frequent  in leguminous species (Kato et al. 2003; Liu et al. 2007). Phenotypic plasticity in the whole plant is an adaptive mechanism that  aids  drought  tolerance  and  light  acclimation  (Wang et al. 2006; Guo et al. 2007). Alteration of foliar physiognomy is an important part of plasticity, as the leaf is a vital  organ  in  photosynthesis  (Mediavilla  and  Escudero 2003; Galme´s et al. 2007).

Seedlings development is the most critical periods in the life-cycle of trees, and the morphological and physiological leaf attributes during these periods are key factors in tree species adaptation. It is very important to reveal the adaptive mechanisms used by R. pseudoacacia in response to diverse light  and  water  conditions,  which  may  provide  useful information for plant biologists and may be important in guiding the maintenance and restoration of vegetation.

figure 3. the midrib and the petiole angles

Picture
Usually plants avoid the light stress throught the movement of leaves angles(midrib angle, petiole angle et al.)(Zhang Shouren et al.2001;Jiang Chuangdao et al.2005). Different types of leaves angles movement have different objectives. The purpose of azimuth angles changes is solar tracking;The movement of the midrib and petiole angles consists in the nyctinasty and thigmotrophic movement, and was effected by the water and light significantly.(Nilsen, 1985;
Simon et al., 2000; Minoru et al., 2002)


Research Objective

The objective of this study was to investigate (1) how leaves move under different conditions of light and water and  (2)  whether  adaptive  mechanisms  can  protect  the leaves of R. pseudoacacia against shade and water stress.
The changes of the midrib angles, petiole angles and azimuth angles could reveal how the light and water stresses effect the R. pseudoacacia and how they respond.

Importance of this research
figure 4. the forest of the R.pseudoacacis

Picture
The  black  locust  tree  Robinia  pseudoacacia  L. was widely planted for its adaptability and aggressive growth. It  has  an  important  role  in  vegetation  restoration  and ecosystem   regeneration.   Limestone,   which   is   easy   to dissolve  and  penetrate,  is  the  representative  mountain component  in  Shandong  Province.  Anthropization  have perturbed  the  vegetation  in  this  area  and  drought  occurs frequently (Wang and Zhou 2000). In addition, the stand is simplex due to artificial planting and allelopathy. It is easy to beget diseases to mature trees and lead to forest gaps.  Fluctuating  light  conditions  have  effects  on  the growth of seedlings.

References

1. Kato E, Nagano H, Yamamura S, Ueda M (2003) Synthetic inhibitor of  leaf-closure  that  reveals  the  biological  importance  of  leaf-movement  for  the  survival  of  leguminous  plants.  Tetrahedron 59:5909–5917.
2. Liu   CC,  Welham   CVJ,   Zhang   XQ,   Wang   RQ   (2007)   Leaflet movement of Robinia pseudoacacia in response to a changing light environment. J Integr Plant Biol 49:419–424.
3. Wang   GG,   Bauerle   WL,   Mudder   BT   (2006)   Effects   of   light acclimation   on   the   photosynthesis,   growth,   and   biomass allocation  in  American  chestnut  (Castanea  dentata) seedlings. For   Ecol   Manage   226:173–180. 
4. Guo WH, Li B, Zhang XS, Wang RQ (2007) Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress. J Arid Environ 69:385–399.
5. Mediavilla  S,  Escudero  A  (2003)  Mature 
tree  versus  seedlings:differences  in  leaf  traits  and  gas  exchange  patterns  in  three co-occurring  Mediterranean  oaks.  Ann  Sci  60:455–460.
6. Galme´s J, Medrano H, Flexas J (2007) Photosynthesis and photoinhibition in response to drought in a pubescent (var. minor) and a glabrous (var. palaui) variety of Digitalis minor. Environ Exp Bot 60:105–111.
7. Zhang SR, Ma KP, Chen LZ (2002) Photosynthetic gas exchange and leaflet movement of Robinia psedoacacia in relation to changing light environments. Acta Bot Sin 44:858–863.
8. Jiang CD, Gao HY, Zou Q, Jiang GM, Li LH (2006) Leaf orientation, photorespiration and xanthophylls cycle protect young soybean leaves against high irradiance in field. Environ Exp Bot 55:87–96
9. Wang RQ, Zhou GY (2000) The vegetation of Shandong Province. Shandong Science and Technology Publication, Jinan, pp 153-156.